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1.  Historical overview of nuclear fission 
–  Current status of models and theory 

2.  Importance of fission modeling 
–  Fundamental science, nonproliferation, criticality, heating, etc. 

3.  Applications: 
–  Expanding Pu suite for multiplicity/criticality 

§  Couple theory models to provide reasonable predictions 

–  Creating new diagnostic tools with simplified depletion 
§  New solutions in the very-low-burnup regime 

4.  Conclusions and outlook 
 

Outline 
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What is the fission process? 
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History of nuclear fission 
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1.  An accidental finding 
–  1934: Fermi bombards Uranium with neutrons believing 

he has produced heavier elements (Z=93) 

Enrico Fermi Ida Noddack 

(1934) 

Z=92 
A=235 

Z=92 
A=236 

Z=93 
A=236 

n

n

p β   (n à p) 
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History of nuclear fission 
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2.  Fission confirmed! 

§  1938: Hahn and Strassmann identify Barium after n 
à Uranium 

Otto Hahn Fritz Strassmann 

 !! Roughly ½ the mass of Uranium !! 

(1939) 
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History of nuclear fission 
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3.  Model Development 
–  1939: Bohr and Wheeler apply liquid drop model for fission 

Volume term 

Surface correction 

Coulomb interaction 

Isospin dependence 

Pairing term 

EB = aVA− aSA
2/3 − aCZ

2 / A1/3 − aA (N − Z )2 / A+δ(A,Z )
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History of nuclear fission 
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4.  Scission Evolution (today) 
–  Macro-micro: semi-classical (shape + nuclear corrections) 

§  Just a few model 
parameters fitted 
with nuclear 
masses 

§  Provides Ypre(A,Z) 
for unmeasured 
reactions!! 
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T. Ichikawa et al. arXiv:1203.2011v2 (2011) 
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History of nuclear fission 
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5.  Fragment De-excitation (today) 
–  CGMF: Monte Carlo implementation of Hauser-Feshbach 
–  Requires starting 

distribution of fission 
fragments: 
§  Y(A,Z,E*,Jπ) 
§  A few model 

parameters 
–  Provides prompt 

neutron and γ-ray 
emissions!! 
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1.  Next-gen reactor design 
–  Accurate energy release for 

new fuels, designs, etc. 
–  Energy release from 

fragments, β’s, γ-rays 

Some motivations 

Calc. ~10% 
too low! 

Lüthi, NSE 138 3 (2001) 
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2.  Verify trends in new correlated experimental 
data or guide new experimental designs 

Some motivations 

Slide 13 

Neutrons predominantly emitted in 
direction of fragments (0° or 180°) 
!! Direct impact on applications !! 

6Li glass to capture n Fission chamber 

Chi Nu Array (LANL) 
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Some motivations 
3.  Predictions for various 

applications 
 

–  Multiplicity counting for 
source identification 

–  Identification of isotopes 
from γ-ray spectroscopy 

Multiplicity distributions different for 
Pu240sf and Pu239nf reactions! 
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Ensslin,  
LA-UR-07-1402 

Fission product abundance related 
to intensity of specific γ-ray lines! 
213 keV line corresponds to 100Zr 

PJ et al. arXiv:1712.05511 (2017) 
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What is the fission process? 
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§  Available data: 

 

Expanding the plutonium suite 
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Isotope/Reaction ν (n/fiss) Pν εn Spectrum 

Pu236(sf) Hicks (1965), Crane 
(1956) 

Hicks (1956) ✖ 

Pu238(sf) Hicks (1965), Crane 
(1956) 

Hicks (1956) ✖ 

Pu238(n,f) Jaffey (1970) ✖ ✖ 

Pu239(n,f) Frehaut (1980), 
Khokhlov (1976) 

Holden (1988), 
Boldeman (1985) 

Chatillon (2014), 
Nefedov (1983) 

Pu240(sf) Huanqiao (1984) Boldeman (1985) Gerasimenko (2002) 

Pu240(n,f) Khokhlov (1994), 
Frehaut (1974) 

✖ Smith (1980) 

Pu241(n,f) Frehaut (1974), 
Vorob’yeva (1974) 

Holden (1988), 
Boldeman (1985) 

✖ 

Pu242(sf) Boldeman (1985) Boldeman (1985) Gerasimenko (2002) 

Pu242(n,f) Khokhlov (1994) ✖ ✖ 

_
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§  Objective: provide reasonable estimates for prompt 
neutron multiplicity, distribution, and energies 
–  And ν, Pν, and εn depend on incident neutron energy En 

 
§  Issues: 

–  CGMF requires Ypre(A,Z,E*,Jπ) 
§  Need some mixture of theory + systematics guidance 

Expanding the plutonium suite 
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✔ ✔ ✔ ✗ ✗

From nuclear data Use theory Ypre(A,Z)? Systematics? 

✗

Q-value 

TXE = En +Bn +M (A0,Z0 )−M (AL,ZL )−M (AH ,ZH )−TKE
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§  Comparing theory with experiment 
–  Reasonable agreement with data 

Start with macro-micro Ypre(A) 

Slide 19 

Use macro-micro 
Ypre(A) as input for 
CGMF calculations 
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Use Wahl’s systematics 
(A. Wahl LA-13928) for 

the Y(Z|A) 

<TKE> systematics via 
Coulomb relation 

Jπ from Becker, PRC 87 
014617 (2013)  

En = thermal 
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§  Pν shows a similar energy-dependence 
–  Shift towards higher neutron multiplicity with increasing En 
–  Not a lot of data available though… 

Predictions for neutron characteristics 

Institute for Defense Analyses   Mar. 8, 2018 
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Predictions! 
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§  Count multiplicity of neutrons in a time window 
–  Relate singles/doubles/triples to effective 240Pu mass 
–  Prompt neutrons from SF can induce fission in rest of Pu! 
 
 

Neutron multiplicity counting problem 
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§  Can use calculated 
Pν for unmeasured 
fission reactions 

§  Estimate the 
multiplication factor 

Ensslin, LA-UR-07-1402 
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§  Get starting isotopics from depletion calculation 
–  Determine spontaneous fission Pν rate 
–  Calculate the additional Pν from neutron-induced reactions 

Neutron multiplicity counting problem 

Institute for Defense Analyses   Mar. 8, 2018 
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Pu multiplication ~ 1% 

Starting isotopics favor 239Pu(n,f) which 
has exp. Pν (calc. Pν have little impact) 
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What is the fission process? 
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§  Some basic reactor physics: 

Developing diagnostics for very-low burnup  

Slide 25 

Primary fuel sources: 
LEU (~3%), nat U (0.71%) 

n 

β 

β 

•  Neutron exposure gives 
information about Pu 
production 

 
•  Cooling time dates the 

capabilities 

•  Depletion analysis uses 
reaction network to model 
the buildup of isotopes in 
a reactor environment 
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§  Objective: determine the total neutron exposure 
and the age of reactor samples 
–  Neutron exposure Φn relates to burnup 
–  Cooling time of sample helps date the capabilities 

§  Issues:  
–  Typical methods are not ideal in very-low burnup 

§  Not enough 241Pu/241Am produced for age estimate 
§  Not enough 134Cs or 154Eu produced for measurement 
§  Graphite Isotope Ratio Method (GIRM) too invasive  
§  Additional problems if the samples are very old! 

Developing diagnostics for very-low burnup  

Slide 26 
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§  Procedure: use Bateman equations to develop 
simplified depletion calculations 

 
–  Need decay constants (λ), cross-sections (σ), the fission 

rate (F), the fission yields (Y), and neutron flux (ϕn) 

Developing diagnostics for very-low burnup  

Slide 27 
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dNB,2

dt
=
!
YB,2 ⋅

!
F

+λB,1NB,1 −λB,2NB,2

Production/Depletion via β-decay 

Production/Depletion via n-capture 

Production via fission 

λ =
ln(2)
t1/2

+φnσ A,2NA,2 −φnσ B,2NB,2

!
F = {FU 235,FU 238,FPu239,FPu241}
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§  Example: Neutron exposure Φn from Uranium ratio 
 

Developing diagnostics for very-low burnup  

Slide 28 
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235U 236U 237U 238U 

σf = 585b σf = 2e-5b 
σn = 99b σn = 2.7b 
λ =  1e-9s-1 λ =  2e-10s-1 

§  235U 
–  σf >> σn 

 
§  238U 

–  σn >> σf 
 

NU 235(t) = NU 235
0 e−σU 235φnt

NU 238(t) = NU 238
0 e−σU 238φnt

N = 0 N = 0 

+φnσU 234NU 234 −φnσU 235NU 235

+λPa235NPa235 −λU 235NU 235

dNU 235

dt
=
!
YU 235 ⋅

!
F

235U not produced in fission 

No 235Pa and λU235 ~ 0 

No 234U 

Φn = ϕnt 

ε = ε0e
−Φn (σU 235

T −σU 238
T )
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§  Cooling Time: Ratios of linear 
fission products 
–  Linear in Φn 

–  Long half-life w.r.t. Tirr and TC 
–  Short precursor halflives 

§  ZCs137 = YCs137 + YXe137 + YI137 

Developing diagnostics for very-low burnup  
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TC =
1

λ2 −λ1
ln

α1/2λ2
!
Z2 ⋅
!
Σ fiss Φ

λ1
!
Z1 ⋅
!
Σ fiss Φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α1/2 =
λ1N1
λ2N2

Activity ratio of 
products 1 & 2 

!
Z = {ZU 235,ZU 238,ZPu239,ZPu241}

Cumulative yields 

!
Σ fiss Φ

Flux-weighted macroscopic 
fission cross-section 

β 
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β 
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Applying the diagnostics 
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U235/U238

U236/U235

Declared

A B C D E F G H J K
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5×1018

1×1019

2×1019
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5×1019
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T
h
e
rm
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lF
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e
n
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[n
/c
m
2
]

§  Start with U-metal and UO3 archived samples 
–  Separate Pu and U then TIMS for isotopics 

§  Uranium isotopics indicate nat U for ε0 

PJ et al., PRApplied 8 044025 (2017)  

Reasonable 
agreement at 
higher burnups 

Slide 30 

Not enough 
236U 
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Applying the diagnostics 
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Cs137/Eu155

Cs137/Sb125

Eu155/Sb125

Kr85/Cs137

Declared

A B C D E F G H J K
5×102

1×103

5×103

1×104

2×104

Sample

C
o
o
lin
g
T
im
e
[d
]

PJ et al., PRApplied 8 044025 (2017)  

§  Gamma spectrometry to identify fission products 
–  Measured 85Kr, 125Sb, 137Cs, 152Eu, 154Eu, 155Eu 
–  Perform diagnostics on linear fission products 

§  Multiple TC 
diagnostics 
required! 

§  137Cs/125Sb 
matches 
declared TC 
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Conclusion 
§  Fission is an extremely complex and intricate process 

–  Tremendous modeling progress made so far 
–  Stepping towards a predictive fission model: Ypre(A) + CGMF 

§  Applications are far-reaching 
–  Reactor heating, nonproliferation, forensics, fund. science 

§  Tools and models exist to fill in the gaps where 
experiments cannot or have not been yet 
–  Ability to improve accuracy of applications 
–  Find new applications and new designs 

Institute for Defense Analyses   Mar. 8, 2018 
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Next Steps 
1.  Fine-tune and perform optimization on Pu suite 

–  Find <TKE> and d<TKE>/dEn that produce reasonable 
neutron properties 

–  Include calculations of spontaneous fission 

2.  Expand the U suite as well 
–  Also useful for criticality, reactor heating, etc. 
 

3.  Begin evaluation procedure to get consistent fission 
data for 235U, 238U, 239Pu 

–  Identified as high-priority for nuclear data community 

Institute for Defense Analyses   Mar. 8, 2018 
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Extra 
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History of nuclear fission 

Slide 36 

Institute for Defense Analyses   Mar. 8, 2018 

§  Gateway to Fission 
–  1932: Chadwick discovers the neutron 

–  1934-1939: A stunning discovery… 

James Chadwick 
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History of Nuclear Fission 
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6.  Nuclear Evolution (today) 
–  Micro: based on nucleon-nucleon forces (calculate densities) 
–  Computationally expensive (not ideal for yields) 

Slide 37 

Bulgac, PRL 116 122504 (2016) 
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Macro-micro fission yields 

Slide 38 

§  Compute the potential energy 
surface of a fissioning nucleus 
–  Macroscopic shape + microscopic 

shell/pairing corrections 
–  Macroscopic shape given by 

collection of shape variables qi 
–  5D for Ypre(A) and 6D for Ypre(A,Z) 

ET (Z,N, qi) = EM (Z,N, qi) + Ep
m(Z,N, qi) + En

m(Z,N, qi)

Loose dependence on N/Z +E
odd

P. Möller & T. Ichikawa EPJ A 51 173 (2015) 
Nuclear shape 

Nucleon corrections 
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Hauser-Feshbach Model 

Slide 39 

§  Need transmission coefficients and level densities 

 

P (✏n)dE / Tn(✏n)⇢(Z,A� 1, E � ✏n � Sn)dE

P (✏�)dE / T�(✏�)⇢(Z,A,E � ✏�)dE

RIPL discrete levels 
+ 

Gilbert-Cameron with a(U) 
T XL (εγ ) = 2π fXL (εγ )εγ

2L+1

Tγ(εγ) from strength-function formalism 

Tn(εn) from optical model calculations 
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Tc =1− Scc
2
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Excitation Energy Sharing 
§  Currently: vary RT until ν(A) matches (CGMF) 

EL
*

EH
* =

aL
aH

R2T EH
* =

ET
*aH

aLRT
2 + aH

EH = ερH (ε)ρL (Eint −ε)dε
0

Eint

∫ ρH (ε)ρL (Eint −ε)dε
0

Eint

∫

§  Next: share Eint via 
maximum entropy 

 
§  Similar structure as 

fitted RT(A) 

Heavy fragment 
takes extra E* 

Max Entropy 

Institute for Defense Analyses   Mar. 8, 2018 
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§  <TKE> is from Coulomb-repulsion à Z2/A1/3 form 

§  <TKE>(A) shapes from nearby Pu 
§  Jπ distribution is a Gaussian  

<TKE> systematics 

Slide 41 

Institute for Defense Analyses   Mar. 8, 2018 

Becker, PRC 87 014617 (2013) 

<TKE>(A) shapes all very 
similar! 
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§  More <TKE>, less <TXE> and fewer neutrons! 
§  Validate systematics with known Pu isotopes! 
§  Can use avg. n multiplicity to place constraints on <TKE> 

Neutron-<TKE> correlation results 

Slide 42 

Need larger dTKE/dEn? 

Pu241 TKE linked to Pu242 
TKE via 2nd chance! 
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§  Prompt neutron multiplicity agrees with ENDF/B-VIII 
–  Shift differences could indicate <TKE> inaccuracy 
–  Slope differences could be from bad d<TKE>/dEn 

Predictions for neutron characteristics 
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We must be careful not to take 
ENDF as nature! Can often be 
evaluations/predictions another 

physicist performed! 
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§  Developing Ypre(A,Z) systematics for r-process 
–  Use macro-micro Ypre(A) and apply simple Y(Z|A) 

Application – fission in r-process (FIRE) 

Slide 44 

§  Americium istopes 
show transition 
from symmetric to 
asymmetric 

§  May need to 
include sf, βf, etc. 
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PJ, M. Mumpower, P. Möller (in prep) 
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3) Gamma-ray spectroscopy 

Slide 45 

The 4+ à 2+ 
has yields from 
Sr95 and Te136   

Double-gating on 
both the 4+ à 2+ 
and the 2+ à 0+ is 
almost 98% clean! 

Analyze γ-ray spec 
data and infer the 
yields of products 
with CGMF!  

The 2+ à 0+ 
has yields 
from La147 

N. Fotiades, PJ, et al. (in prep) 
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§  Neutron Exposure: Uranium ratios 

 
§  235U/238U: 

–  Relies on knowing initial enrichment 
–  More accurate as concentration is higher 

§  236U/235U: 
–  Trouble when 236U is very low 
–  Independent of initial enrichment 

Developing diagnostics for very-low burnup  
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Φn =
ln(ε0 /ε)

σU 235
T −σU 238

T

Φn =
1

σU 235
T −σU 236

T ln σU 235
C − ρ(σU 236

T −σU 235
T )

σU 235
C

⎛

⎝
⎜

⎞

⎠
⎟

ε = 235U/238U 

ρ = 236U/235U 
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✗ 
✔ 

✔ 
✗ 



UNCLASSIFIED 

§  Linear Systems: Simplest reaction networks 

 
§  For most linear nuclides, β-decay dominates… 

§  Taylor expand… 

Deriving the cooling time diagnostic 
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Depleted via β-decay and n-capture 
Produced via fission 

dNL

dt
= −(λL +φnσ

T )NL +
!
ZL ⋅
!
F

dNL

dt
= −(λL +φnσ

T )NL +
!
ZL ⋅
!
F NL (t) =

!
ZL ⋅
!
F
"λL

(1− e− "λLt )Solution 

Assumes no initial abundance at start of 
irradiation à satisfied for linear systems 

NL (t) =
!
ZL ⋅
!
F
"λL

(1−[1− "λLt +
1
2
( "λLt)

2…])

NL (t) = t(
!
ZL ⋅
!
F)⎯→⎯ Φn

!
ZL ⋅

!
Σ fiss( )e−λLTC
Add in e-λT for decay time 
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UNCLASSIFIED 

§  Linear Systems: 

Defining linear systems 

Institute for Defense Analyses   Mar. 8, 2018 

Kr85

Sb125

Cs137

Eu152

Eu154

Eu155
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]

1.  β-parents are 
short-lived 

2.  No significant 
neutron-capture 
channels 

3.  Large cumulative 
yields (for 
measurement 
purposes) 

4.  Long-lived (for 
measurements 
purposes) 

PJ et al., PRApplied 8 044025 (2017)  

PJ and P. Huber PRL 116 122503 (2016) Nonlinear depend on size of reaction 
network! (152,154Eu for example) 
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Verifying the diagnostics 
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UNCLASSIFIED 

Chemical separation 
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§  Start with U-metal and UO3 archived samples 

L. Tandon et al., J. Radioanal Nucl Chem 282 (2009) 

B. Byerly et al., J. Radioanal Nucl Chem 307 (2016) 

Dissolve in 
7M HNO3 

Separate Pu from U 
with anion-exchange 

columns 

Pu/U isotopics 
via TIMS 

UTEVA (2mL) 

Original 
Sample 

Gamma-ray 
spec (HPGe) 

Actinide Analysis 

Product Analysis 

Analyze peak data with 
SNAP/FRAM 
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UNCLASSIFIED 

§  Fission product yields change with fissioning isotopes 
and with energy (and data source!) 

 
 
 
 
 
 
 
 
 
 

§  Flux-average the fission rates so as not to bias towards 
U235 or Pu239 fissions 

Why flux-averaging is needed 
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E=0.0253eV

E=400keV

E=500keV

E=2MeV

E=14MeV

JEFF

JENDL

ENDF5

ENDF7

U235 Pu239 Pu241 U238

5. × 10-4

0.001

0.002

0.005

Fissile

C
F
Y
[f
is
s
io
n
-
1
]

Eu155 §  Pu239 yields are 
~4x larger than 
U235 yields! 

§  All databases are 
very similar 
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§  Tc estimates using 
Eu155 show 
systematic 
disagreement with 
others 

§  Abnormally large 
Eu152, Eu154 
abundances 

§  nat Eu? 
 
 
 
 
 
 
 
 
 

Eu155 issue 
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